CHROM. 5781

Separation of carbethoxymethylpyrroles by thin-layer chromatography

The separation by thin-layer chromatography (TLC) of alkyl carbethoxypyrroles and carboxylic acid pyrroles has received little attention^{1,2}. During a study on alkylation³ and Hantzsch synthesis⁴ of pyrroles a large number of α - and β -carbetoxy-alkylpyrroles were prepared. In this paper we report a TLC procedure which allows the separation of α - and β -carbethoxymethylpyrroles.

Material and methods

The details of the preparation and structural identification of various methylcarbethoxypyrroles used in this investigation are reported clsewhere³ ⁶. A suspension of 30 g of Silica Gel G (E. Merck, Darmstadt) in 60 ml water was spread on glass plates 20 × 20 cm to a thickness of 250 μ with a Desaga applicator. The plates were dried at 105–110° for 30 min and stored in a desiccator. A 0.1% solution of the compounds in methanol was prepared and 2 μ g of each compound was spotted 2 cm from the edge of the plate. The plate was then developed with 150 ml of the solvent system ether-*n*-hexane containing 2% glacial acetic acid (1:1). Usually 45 min were required for the solvent to travel a distance of 12–15 cm. The plates were then dried, sprayed with Ehrlich reagent⁷ and after keeping for 5 min at 100° the pyrroles appeared as red, pink, brown, blue and violet spots.

Results and discussion

Several solvent systems such as ethyl acetate-benzene, benzene-methanol, chloroform-acetone, chloroform-ethyl acetate and ether-*n*-hexane containing 2% glacial acetic acid, in various proportions were tried. Also many supports such as Silica Gel G, alumina, kieselguhr and cellulose were tried. Only the mixture ether-*n*-hexane containing 2% glacial acetic acid (I:I) on Silica Gel G gave good separation.

Three main groups of compounds were studied, namely: monomethyl carbethoxypyrroles; dimethyl carbethoxypyrroles; and trimethyl carbethoxypyrroles. Monomethyl carbethoxypyrroles. The R_F values of monomethyl carbethoxy-

TABLE I

SEPARATION OF	MONOMETHYL CARBETHOXYPYRROLES BY TLC
Solvent system	used: ether- <i>n</i> -hexane containing 2% glacial acetic acid (I:I).

Compounds		$R_F \times 100$	Colour with Ebylich
No.	Name		1.3107 70070
I	2-Methyl-3-carbethoxypyrrole	54	violet
2	3-Methyl-4-carbethoxypyrrole	54	blue
3	2-Methyl-5-carbethoxypyrrole	70	pink
4	3-Methyl-2-carbethoxypyrrole	70	violet
5	2-Methyl-3,5-dicarbethoxypyrrole	62	pink
Ğ	3-Methyl-2,5-dicarbethoxypyrrole	70	pink
7	2-Methyl-3-carbmethoxypyrrole	54	violet
8	2-Methyl-3-carbobenzoxypyrrole	54	blue
9	2-Methyl-3-tertcarbutoxypyrrole	66	violet

pyrroles are shown in Table I. The *a*-carbethoxy monomethylpyrroles are readily separated from the corresponding β -carbethoxy monomethylpyrroles in this system. Thus the *a*-carbethoxy compounds (3 and 4) are readily separated from the β carbethoxy compounds (1 and 2). Separations are not possible between the individual *a*-carbethoxy monomethylpyrroles nor between individual β -carbethoxy monomethylpyrroles. Among the monomethyl dicarbethoxypyrroles, *z*-methyl-3,5-dicarbethoxypyrrole(5) has an R_F value intermediate between *a*-carbethoxy monomethyland β -carbethoxy monomethylpyrroles. The *a*-dicarbethoxymonomethylpyrrole (6) has an R_F value similar to *a*-carbethoxy monomethylpyrrole. Replacement of a 3carbethoxy substituent (1) by a *tert*-butoxyester (9) decreases the polarity of the compound and results in an increased R_F value. The 3-carbmethoxy monomethyl-(7) and 3-carbobenzoxy monomethylpyrrole (8) have the same R_F values as 3-carbethoxy monomethylpyrrole (1).

Dimethyl carbethoxy pyrroles. The α -carbethoxy dimethyl pyrroles (10–12) have higher R_F values than the β -carbethoxy dimethyl pyrroles (14,15) (Table II) and are readily separable. Individual α -carbethoxy dimethyl isomers are not separable.

TABLE II

SEPARATION OF DIMETHYL CARBETHOXYPYRROLES BY TLC

Solvent system used: ether- <i>n</i> -hexane	containing 2%	glacial	acetic acid	(I:I).
--	---------------	---------	-------------	--------

Compounds		$R_F \times 100$	Colour with Ehrlich
No.	Name		
10	2,3-Dimethyl-5-carbethoxypyrrole	70	brown
II	2,4-Dimethyl-5-carbethoxypyrrole	70	pink
12	3,4-Dimethyl-5-carbethoxypyrrole	70	blue
13	3,4-Dimethyl-2,5-dicarbethoxypyrrole	70	pink
14	2,4-Dimethyl-3-carbethoxypyrrole	62	red
15	2,5-Dimethyl-3-carbethoxypyrrole	54	brown
16	2,4-Dimethyl-3,5-dicarbethoxypyrrole	62	pink

Among β -carbethoxy dimethylpyrroles, 2,4-dimethyl-3-carbethoxypyrrole (14) has a higher R_F value than 2,5-dimethyl-3-carbethoxypyrrole (15), and the compounds are separable. Among dimethyl dicarbethoxypyrroles, compounds with carbethoxy groups in the α - and β -positions (16) have R_F values intermediate between α carbethoxy dimethyl- and β -carbethoxy dimethylpyrroles. On the other hand dimethyl dicarbethoxypyrroles with two carbethoxy groups in the α -position (13) have similar R_F values to dimethylpyrroles with one α -carbethoxy substituent (10–12).

Trimethyl carbethoxypyrroles. In this series there are only two isomers (Table III) the α - and β -carbethoxy trimethylpyrroles. The α -carbethoxy trimethylpyrrole (17) has a higher R_F value than the β -carbethoxy trimethylpyrrole (18).

The a-carbethoxy group is more strongly conjugated with the pyrrole ring than the β -carbethoxy group⁸, which makes the former less polar and hence move faster. This is the reason why the methyl substituted pyrroles with a-carbethoxy substituents can be separated from the corresponding β -carbethoxy methylpyrroles. Replacement of a 3-carbethoxy group (I) by a *tert*.-butylester group (9) makes the compound less polar and hence move faster. Pyrroles with one β -carbethoxy group containing one

TABLE III

SEPARATION OF TRIMETHYL CARBETHOXYPYRROLES BY TLC Solvent system used: ether-n-hexane containing 2% glacial acetic acid (1:1).

Compounds		$R_F \times 100$	Colour with Fhylich
No.	Name		
17	2,3,4-Trimethyl-5-carbethoxypyrrole	70	pink
18	2,4,5-Trimethyl-3-carbethoxypyrrole	62	pink

methyl group in position 2 or 3 can be separated from pyrroles with one β -carbethoxy group containing two methyl substituents in position 2, 4 or three methyl groups in position 2,4,5. Methyl pyrroles with carbethoxy groups in α - and α' -positions have the same R_F value as mono α -carbethoxy methylpyrroles. Methylpyrroles with carbethoxy groups in both α - and β -positions have R_F values intermediate between α -carbethoxy methylpyrroles.

Department of Pharmacology, Queen's University, Kingston, Ontario (Canada)

I L. CHIERICI AND M. PERANI, Ric. Sci., Sez. A., 6 (1964) 168.

- 2 M. PIATTELLI, E. FALTORUSSO AND S. MAGNO, Rend. Accad. Sci. Fis. Mat. Naples, 28 (1961) 165.
- 3 M. W. ROOMI AND S. F. MACDONALD, Can. J. Chem., 48 (1970) 139.
- 4 M. W. ROOMI AND S. F. MACDONALD, Can. J. Chem., 48 (1970) 1689.
- 5 H. FISCHER AND H. ORTH, Die Chemie des Pyrroles, Vol. 1, Akad. Verlag, Leipzig, 1934.
- 6 M. W. ROOMI AND H. DUGAS, Can. J. Chem., 48 (1970) 2303.
- 7 J. E. FALK, Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1964, p. 160.
- 8 R. A. JONES, Advan. Heterocycl. Chem., 11 (1970) 383.

First received August 9th, 1971; revised manuscript received October 18th, 1971

J. Chromatogr., 65 (1972) 580-582

M. W. ROOMI